

GridCloud: Managing the Smart Grid with Highly Assured Cloud Computing

Presenter: David Bindel, Cornell University

January 21, 2015

Project Objectives

- Goal: Demonstrate a viable cloud stack for smart grids
 - Meet real-time, scalability, robustness requirements
 - Prototype a working open-source system
 - Demonstrate a real application at scale
- Challenge: Commercial clouds provide few guarantees!
- Metrics: Demo monitoring real-time properties of 15K bus network model with injected failure scenarios on EC2

Team Responsibilities

- Cornell University [Birman, Van Renesse, Bindel]
 - Leverage DARPA-funded Isis2 system + IronStack high assurance networking in basic platform. Create monitoring and self-management framework (DMake) and a secure and unbreakable connection technology (TCP-R+SSL/TLS)
- Washington State University [Hauser, Bakken, Bose]
 - Adapt DOE-funded GridStat platform to run on GridCloud and leverage its scalable fault tolerance
 - Show that in this configuration, Grid Stat can scale to meet real-time state estimation targets

- Goal: PMUs monitor "weather" on grids
 - Track (and mitigate) bad transients

- Use harmless transients to refine grid models
 - Are line parameters changing?
 - How do transients pass through neighbors?
 - What's the actual topology?
- Want to fuse all available info in diagnoses
- Want information at PMU speeds for fast response

FLiER: Contingency Fingerprints

Final Year Accomplishments

- Topology changes leave "fingerprints".
- See line failures, breaker changes
- Estimate by linearization about recent state
- Score contingencies by fingerprint match
- Filter possibilities via angle to subspace

Accurate:

- PMU everywhere: Almost all right
- Sparse PMUs: Usually right, generally "close" if wrong
- Fast diagnosis
 - Ex: Polish network with ~3000 lines
 - 100 PMUs placed randomly
 - Fail random line and time
 - Less than ten possibilities pass filter
 - Typical run: 0.25-0.5 seconds (unoptimized Python implementation)

The Next Six Months

- Detailed performance measurements on EC2
- Completion of ISO NE pilot project
 - PMU source, PMU metadata repository, data relay
 - WSU PMU-based state estimator
 - Output visualization
- Dynamic event fingerprinting

Platform Building

Overall Project Accomplishments

GridCloud Core Technologies

Highly Assured Cloud Computing Technology

sponsored by the Department of Energy ARPA-E program

Three key techniques

· Redundancy / Replication

· Software defined network

with real-time guarantees

management

Consistent monitoring and

Why Clouds?

- Cost effective: pay only for resources you are using, amortize infrastructure over many users
- Geographic scale: multiple data centers at widely separated locations gives physical reliability
- Scalable capacity: potential to do real-time tracking of PMU data at national scale

What Makes it Hard?

- Today's cloud is inadequately secure and has poor real-time guarantees
- At scale with many moving parts, transient and permanent faults are common, and rare events occur surprisingly often
- We need a computing model that matches the reality: multiple operators
- We need to find scalable ways to compute state estimates rapidly and robustly
- Even if power industry runs the cloud, demands new trust and auditing approaches

Application Layer

Real-Time State Estimation enabling a wide range of new operator-oriented functionality and the potential for direct control of sensitive tasks

IronStack software architecture hardware abstraction layer (HAL) packet handler flow table link state management ARP table CONTROLLED ARP CONTROLLED ARP

Tools

- Isis2: A DARPA funded Cornell-developed toolkit for building highly assured cloud computing solutions. Aims at programmers.
- DMake: Based on Isis2, monitors and manages a large, complex system.
 Aims at a higher level system operator.
- IronStack: A new networking package that transforms private networks into highly secure, highly assured realtime network solutions

Future:

- Powerful operatororiented visualization and collaboration tools
- Think of a table-sized tablet with a wide range of "smart" computational elements you can touch/drag/drop

Performance targets?

- 15,000 or more PMUs or other sensor devices monitored at 30Hz
- Nationwide physical scale
- 30 State estimates per second with 250ms delay
- · Delays 10x smaller in smaller regional setups
- Instant and automated recovery from faults.
 Geographic replication to handle major outages.

Status?

 GridCloud is working! Demos at steadily increasing scale (but using simulated data, and Amazon EC2).

Building on the Platform

- Plumbing is a pre-requisite
 - Isis2 + DMake + IronStack + GridStat + Sprinkler + ...
- But plumbing is not the purpose!
 - GridCloud currently supports PMU-based state estimator
 - Full state estimates (5/s) on 15K PMU test network (WECC model x3)
 - Preliminary development of other "fingerprint" apps

Technology-to-Market

- Goal: Open cloud platform for smart grid applications
- Relevant metrics
 - Does industry view the work as credible?
 - Will the approach be adopted by vendors?
- Pilot with ISO-NE is a first step to industry adoption
 - We are also engaging with NYPA and ISO NY
- Bakken pursuing other leads (RTE France, EPRI, BPA; KTH, TU Darmstadt; many other panels and discussions)
- Also a commercial path for some software
 - WSU spun off a company to market GridStat
 - IronStack is in early pre-commercialization phase

ISO-NE Pilot Project

- Vision (Eugene): Common platform for ISO and utilities to
 - Share real-time and historical PMU data
 - Share results of applications that use that data
- Pilot experiment: GridCloud tech + ISO-NE PMU data
 - Study cloud feasibility: issues raised, costs, etc
 - Collect PMU data in cloud using GridCloud
 - Run hierarchical linear state estimator in cloud
- System will demonstrate
 - Multiple uses of PMU data
 - Real-time results from a cloud app delivered to utility
 - Sufficiently small latency in measurement delivery
 - Manageability of cloud components
 - Integration of PMU measurement data from multiple sources

ISO-NE Demo Block Diagram

Technology-to-Market

Post ARPA-E Goals

- Growing collaboration from pilot with ISO-NE
- Goal: Federated system for monitoring and simulation
 - Provide path to local adoption, broad vendor ecosystem
 - Plumbing: coordinate commercial cloud, local clusters
 - Monitoring: state estimation, fingerprints, etc
 - Simulation: iteratively reconcile sims across areas
- Funding sources
 - Expect DARPA to continue investment in core tech
 - Proposal out to NSF
 - DOE more suitable for smart-grid specific activities
 - Possible local interactions with NYSERDA

Conclusions

"The future is already here – it's just not very evenly distributed" - William Gibson

"Easy things should be easy, and hard things should be possible"
- Larry Wall

- Distributed cloud-hosted platforms make sense
 - Cloud platforms are ubiquitous in other areas
 - Even the current grid is a distributed system
- Crucial to invest in engineering these platforms
 - Commercial grids fit Google / Facebook, not grid
 - Going beyond "best effort" is hard
 - Platform work enables novel analysis tools

